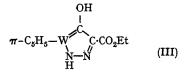
## 1,3-Organometallic Insertion Reactions with Trimethylsilyldiazomethane: Synthesis of (Trimethylsilyl)methylazo–Transition Metal Complexes

By M. F. LAPPERT\* and J. S. POLAND

(School of Molecular Sciences, University of Sussex, Brighton, BN1 9QJ)

Summary The reaction between  $\pi$ -C<sub>5</sub>H<sub>5</sub>(OC)<sub>3</sub>M-H (M = Mo or W) and Me<sub>3</sub>SiCHN<sub>2</sub> provides the first example of a 1,3-organometallic insertion and the products  $\pi$ -C<sub>5</sub>H<sub>5</sub>-(OC)<sub>2</sub>M·N=N·CH<sub>2</sub>SiMe<sub>3</sub> are the first stable alkylazo-compounds.


INSERTIONS (equation 1) are an important class of organometallic reactions.<sup>1</sup> They may be 1,1-(e.g., A = CO), 1,2 (e.g.,  $A = CH_2:CH_2$ ), or 1,4- (e.g.,  $A = CH_2:CH:CH:CH_2$ ) in character. We now report the first example (equation 2; M = Mo or W) of a 1,3-insertion.

$$LM-X + A \rightarrow LM-A-X$$
 (1)

$$\pi - C_5 H_5 (OC)_3 M - H + Me_3 Si\overline{C}H \cdot N = N \xrightarrow{+} (-CO)$$
  
$$\pi - C_5 H_5 (OC)_2 M \cdot N = N \cdot CH_2 SiMe_3 \qquad (2)$$
  
(I)

It is possible that the reaction of diazomethane with a metal hydride  $[e.g.,^2 \pi - C_5H_5(OC)_3W-H + CH_2N_2 \rightarrow \pi - C_5H_5(OC)_3WCH_3$  (4%)] involves an initial 1,3-(rather than carbene-) insertion with subsequent nitrogen expulsion; by-products tend to be red oils and these may well be azo-compounds. Significant also are the following points. (i) The 1,3-dipolar character of the  $CN_2^{2-}$  ligand is evidently enhanced by the attachment to C of an organometallic

group (see also ref. 3 regarding 1,3-cyclo-additions with dipolarophiles such as  $MeO_2C\cdot C:C\cdot CO_2Me$ ); related ligands, such as  $N_3^-$ , may prove to be similarly stabilised. (ii) The isolation of stable *alkylazo*-compounds (I) is unprecedented (phenylazo-derivatives of W<sup>II</sup>,<sup>4</sup> Mo<sup>II</sup>,<sup>5</sup> and Pt<sup>II 6</sup> are known) and suggests N=N  $\pi$ -electron delocalisation into the transition metal and/or the  $\beta$ -silicon *d*-orbitals. (iii) Compounds of type (I) may be useful precursors for synthesis of nitrogen complexes (*cf.* ref. 7).



With regard to (i), Me<sub>3</sub>SnN<sub>3</sub> behaved (equation 3) as a pseudohalide rather than an azide (a side-reaction afforded the molybdenum azide); compound (II) is known.<sup>8</sup> Phenyl azide and molybdenum hydride did not react at  $60^{\circ}$ , while *p*-tosyl azide at  $-30^{\circ}$  gave an, as yet, unidentified orange powder.

$$\begin{aligned} \pi\text{-}C_5H_5(OC)_3Mo-H + Me_3SnN_3 \rightarrow \\ \pi\text{-}C_5H_5(OC)_3Mo-SnMe_3 + HN_3 \qquad (3) \\ (II) \end{aligned}$$

The structures of the alkylazo-compounds (I) were compound may be the first transition-metal diazoalkane, established spectroscopically (see Table). It is interesting but is still poorly characterised.

| TABLE                                                                                                                       |           |              |                                                           |                                           |                          |                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------------------------------------------------------|-------------------------------------------|--------------------------|-------------------------------------------------------------------------|
| Compound<br>$\pi$ -C <sub>s</sub> H <sub>s</sub> (OC) <sub>2</sub> W-N=N-CH <sub>2</sub> SiMe <sub>2</sub> <sup>e,d,e</sup> | Yield (%) | M.p.<br>72°ª | v (CO)<br>(cm. <sup>-1</sup> ) <sup>a</sup><br>1899, 1979 | $\nu(N_2) \ (cm.^{-1})^{a}$<br>1618, 1640 | Appearance<br>red cryst. | $\lambda_{max.}$ (nm.) ( $\epsilon$ ) <sup>b</sup><br>386(115), 471(31) |
| $\pi - C_5 H_5(OC)(Ph_3P)W - N = NCH_2SiMe_3^{f}$                                                                           | 26        | 139—141°     | 1820                                                      | overlaps<br>with Ph                       | pink cryst.              |                                                                         |
| $\pi$ -C <sub>5</sub> H <sub>5</sub> (OC) <sub>2</sub> Mo-N=NCH <sub>2</sub> SiMe <sub>3</sub> <sup>d,e,g</sup>             | 84        | 63—64°       | 1908, 1982                                                | 1642                                      | red cryst.               | 383(102), 459(28)                                                       |

• Hexane solution; <sup>b</sup> cyclohexane solution; also strong absorptions 340—200 nm.; <sup>c</sup> n.m.r. chemical shifts ( $\tau$ ) in C<sub>6</sub>H<sub>6</sub>: 9.90 (Me<sub>3</sub>), 6.78 (CH<sub>2</sub>), 4.90 (C<sub>5</sub>H<sub>5</sub>); <sup>d</sup> prepared by reaction in Et<sub>2</sub>O at 20°; <sup>e</sup> showed a parent molecular ion in mass spectrum; <sup>f</sup> prepared by reaction of  $\pi$ -C<sub>5</sub>H<sub>5</sub>(OC)<sub>2</sub>W-N=NCH<sub>2</sub>SiMe<sub>3</sub> and Ph<sub>3</sub>P in C<sub>6</sub>H<sub>6</sub> at 60° (8 hr.); <sup>g</sup> n.m.r. chemical shifts ( $\tau$ ) in C<sub>6</sub>H<sub>6</sub>: 9.86 (Me<sub>3</sub>), 6.93 (CH<sub>2</sub>), 4.76  $(C_{\mathbf{5}}H_{\mathbf{5}}).$ 

that  $\pi$ -C<sub>5</sub>H<sub>5</sub>(OC)<sub>3</sub>W<sup>-</sup> and diazoacetic ester undergo a different reaction from (2), providing compound (III).9

Attempted insertion reactions into  $M-M' [\pi-C_5H_5(OC)_3 W-SnMe_3/CH_2N_2$ ],  $M-R[\pi-C_5H_5(OC)_3Mo-Me/Me_3SiCHN_2]$ , M-Cl [trans-(Ph<sub>3</sub>P)<sub>2</sub>Ir(CO)Cl/Me<sub>3</sub>SiCHN<sub>2</sub>], and M-NR<sub>2</sub> bonds proved unsuccessful. However, reactions of metal amides (equation 4) [M in (IV) = Me<sub>3</sub>Sn, (b.p. 44-46°/ 0.5 mm.,  $\nu(N_2)$ , 2022 cm.<sup>-1</sup>) or  $\frac{1}{2}(\pi - C_5H_5)_2$ Zr (pyrophoric solid);  $v(N_2)$ , 2050 cm.<sup>-1</sup>] proved interesting. The zirconium

$$M-NMe_{2} + Me_{3}Si\overline{C}H-N=N \rightarrow Me_{3}Si \overline{C}-N=N + Me_{2}NH$$
(4)  
(IV)

+

We thank the United States Army for financial support through its European Office.

(Received, July 28th, 1969; Com. 1157.)

<sup>1</sup> M. F. Lappert and B. Prokai, Adv. Organometallic Chem., 1967, 5, 225.

- <sup>2</sup> M. F. Lappert and J. S. Poland, *Chem. Comm.*, 1969, 156. <sup>3</sup> E. O. Fischer, W. Hafner, and H. O. Stahl, *Z. anorg. Chem.*, 1956, **282**, **47**.
- <sup>6</sup> A. N. Nesmeyanov, Yu. A. Chapovskii, N. A. Ustynuk, and L. G. Makarova, *Izvest. Akad. Nauk S.S.S.R., Ser. Khim.*, 1968, 449.
  <sup>6</sup> R. B. King and M. B. Bisnette, *J. Amer. Chem. Soc.*, 1964, 86, 5694; *Inorg. Chem.*, 1966, 5, 300.
  <sup>6</sup> G. W. Parshall, *J. Amer. Chem. Soc.*, 1965, 87, 2133; 1967, 89, 1822.
  <sup>7</sup> J. Chatt, J. R. Dilworth, and G. J. Leigh, *Chem. Comm.*, 1969, 687.
  <sup>8</sup> L. B. L. Dilworth, and G. J. Leigh, *Chem. Comm.*, 1969, 687.

<sup>8</sup> H. R. H. Patil and W. A. G. Graham, Inorg. Chem., 1966, 5, 1401; D. J. Cardin, S. A. Keppie, and M. F. Lappert, Inorg. Nuclear Chem. Letters, 1968, 4, 365.

9 M. L. H. Green and J. R. Sanders, Chem. Comm., 1967, 956; J. R. Knox, Abstracts, Chem. Soc. Autumn Meeting, Keele, 1968, A32.